Abstract

Different strains of inbred mice exhibit different susceptibility to the development of atherosclerosis. The C3H/HeJ and C57Bl/6 mice have been used in several studies aimed at understanding the genetic basis of atherosclerosis. Under controlled environmental conditions, variations in susceptibility to atherosclerosis reflect differences in genetic makeup, and these differences must be reflected in gene expression patterns that are temporally related to the development of disease. In this study, we sought to identify the genetic pathways that are differentially activated in the aortas of these mice. We performed genome-wide transcriptional profiling of aortas from C3H/HeJ and C57Bl/6 mice. Differences in gene expression were identified at baseline as well as during normal aging and longitudinal exposure to high-fat diet. The significance of these genes to the development of atherosclerosis was evaluated by observing their temporal pattern of expression in the well-studied apolipoprotein E model of atherosclerosis. Gene expression differences between the 2 strains suggest that aortas of C57Bl/6 mice have a higher genetic propensity to develop inflammation in response to appropriate atherogenic stimuli. This study expands the repertoire of factors in known disease-related signaling pathways and identifies novel candidate genes for future study. To gain insights into the molecular pathways that are differentially activated in strains of mice with varied susceptibility to atherosclerosis, we performed comprehensive transcriptional profiling of their vascular wall. Genes identified through these studies expand the repertoire of factors in disease-related signaling pathways and identify novel candidate genes in atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.