Abstract

The present experiment examined ethanol self-administration in C57BL/6J (C57) and DBA/2J (DBA) mice using a continuous access operant procedure. Adult male C57 and DBA mice were initially trained to perform a lever press response to obtain access to 10% w/v sucrose solution. Subsequently, the mice were placed in operant chambers on a continuous (23 hr/day) basis with access to food (FR1), 10% v/v ethanol (FR4), and water from a sipper tube. C57 mice displayed greater rates of responding on the ethanol-associated lever compared with DBA mice. Responding on the food lever was the same in both strains, but DBA mice consumed greater amounts of water. C57 mice consistently displayed both prandial and nonprandial episodes (bouts) of ethanol responding. DBA mice did not respond for ethanol in bouts. Following 50 consecutive sessions, ethanol concentration was altered every 5 days. Response patterns were determined using 0, 5, 10, 20, and 30% v/v ethanol concentrations. C57 mice displayed concentration-dependent responding on the ethanol lever showing that ethanol was functioning as an effective reinforcer in this strain. In contrast, responding on the ethanol lever by DBA mice did not change as a function of ethanol concentration. Saccharin (0.2% w/v) was subsequently added to the ethanol mixture, and responding was examined at 0, 5, 10, and 20% ethanol concentrations. Overall, ethanol lever responding was increased in both strains. As before, C57 mice showed higher levels of ethanol responding, compared with DBA mice. C57 mice also showed higher responding for saccharin alone. These results are consistent with findings that suggest orally administered ethanol is a more effective reinforcer in C57 mice than in DBA mice. Furthermore, C57 mice engage in ethanol-reinforced responding over a broader range of conditions than DBA mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.