Abstract

Basic properties of noradrenaline release were studied in primary cultures of thoracolumbar postganglionic sympathetic neurons taken from 1-3-day-old NMRI mice. After 7 days in vitro, the cultures were preincubated with [3H]noradrenaline and then superfused and stimulated electrically. Conventional trains of pulses (for example, 36 pulses at 3 Hz) as well as single pulses and brief high-frequency trains (for example, four pulses at 100 Hz) elicited a well-measurable overflow of tritium, which was abolished by 0.3 microM tetrodotoxin or omission of Ca2+, but not changed by 1 microM rauwolscine. In trains of one, two, four, six, eight, or 10 pulses at 3 Hz, the evoked overflow of tritium remained constant from pulse to pulse at 1.3 mM Ca2+, but declined slightly at 2.5 mM Ca2+. Tetraethylammonium at 10 mM selectively increased the overflow elicited by small pulse numbers and especially by a single pulse. In trains of 10 pulses delivered at 0.3, 1, 3, 10, 30, or 100 Hz, the evoked overflow of tritium increased from 0.3 to 30 Hz and then declined at 100 Hz. This relationship was particularly pronounced at low Ca2+ concentrations (for example, 0.3 mM). Tetraethylammonium at 10 mM selectively increased the overflow elicited by low frequencies of stimulation. It is concluded that primary cultures of mouse postganglionic sympathetic neurons can be used to investigate release of [3H]noradrenaline. The release is well measurable, even upon a single electrical pulse. It agrees with release in intact sympathetically innervated tissues in a number of fundamental properties, including the pulse number and frequency dependence. The preparation may be of special interest in conjunction with genetic manipulations in the donor animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.