Abstract

Ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, is a labile protein that is regulated by interacting with antizymes (AZs), a family of polyamine-induced proteins. Recently, a novel human gene highly homologous to ODC, termed ODC-like or ODC-paralogue (ODCp), was cloned, but the studies aimed to determine its function rendered contradictory results. We have cloned the mouse orthologue of human ODCp and studied its expression and possible function. mRNA of mouse Odcp was found in the brain and testes, showing a conserved expression pattern with regard to the human gene. Transfection of mouse Odcp in HEK 293T cells elicited an increase in ODC activity, but no signs of arginine decarboxylase activity were evident. On the other hand, whereas the ODCp protein was mainly localized in the mitochondrial/membrane fraction, ODC activity was found in the cytosolic fraction and was markedly decreased by small interfering RNA against human ODC. Co-transfection experiments with combinations of Odc, Az1, Az2, Az3, antizyme inhibitor (Azi), and Odcp genes showed that ODCp mimics the action of AZI, rescuing ODC from the effects of AZs and prevented ODC degradation by the proteasome. A direct interaction between ODCp and AZs was detected by immunoprecipitation experiments. We conclude that mouse ODCp has no intrinsic decarboxylase activity, but it acts as a novel antizyme inhibitory protein (AZI2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.