Abstract

Cytokines and growth factors play important roles in implantation and maintenance of pregnancy, but also during early development. Among them interferon-gamma (IFNgamma) is highly expressed by mammalian trophoblast cells during implantation and seems to be involved in some cases of pregnancy loss. In the present study we investigated the possible presence of IFNgamma receptors (IFNGR) on mouse oocytes and preimplantation embryos. The two receptor chains IFNgammaRalpha (IFNGR-1) and IFNgammaRbeta (IFNGR-2) have been detected by indirect immunofluorescence at the surface of mouse oocytes (in germinal vesicle and metaphase II stages), as well as at all stages of in vitro embryo development from the one-cell to blastocyst stage. IFNGR appeared to colocalize partly with ganglioside GM1 at the cell surface of oocytes and embryos, indicating a possible preferential localization of this receptor in "rafts" microdomains. This was analyzed in more detail using software developed in the laboratory. IFNgamma was found to bind to its receptor at all stages analyzed. RT-PCR and Southern blot experiments confirmed the presence of the transcriptionally regulated IFNGR-2 chain mRNA, in mouse oocytes and preimplantation embryos. These results show, for the first time, that mouse oocytes and preimplantation embryos bear a complete and theoretically functional IFNGR, suggesting that this cytokine could play a role during early development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.