Abstract
Noxa is a member of the pro-apoptotic BH3-only group of Bcl-2 proteins that is known to bind specifically to anti-apoptotic Mcl-1 and A1, antagonizing their function. Mcl-1 has been reported to have a short half-life, and Noxa up-regulation accelerates Mcl-1 degradation by the proteasome. Unlike human Noxa, mouse Noxa has two BH3-domains, which both have affinity for Mcl-1. We here investigate two aspects of the molecular function of Noxa, namely the requirements for the two BH3-domains in mouse Noxa and the role of Noxa in Mcl-1-degradation. We found that only the C-terminal BH3-domain of mouse Noxa is active in neutralizing Mcl-1. This was the result of the targeting of Noxa to the outer mitochondrial membrane through its C-terminal alpha-helix, which allowed Mcl-1-neutralization only when the BH3-domain was immediately N-terminal of the membrane anchor. However, the N-terminal BH3-domain enhanced interaction with Mcl-1 and A1. The Noxa-dependent degradation of Mcl-1 was independent of the kinase GSK3 and the deubiquitinase Usp9x in mouse embryonic fibroblasts. These data show that Noxa is targeted to the mitochondrial membrane where it neutralises Mcl-1 via its C-terminal BH3-domain and suggest that Noxa is co-degraded with Noxa, in a way independent of ubiquitin-modifying enzymes described for Mcl-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.