Abstract

Cognitive dysfunction is a core feature of schizophrenia. Growing evidence indicates that a wide variety of genetic mutations and polymorphisms impact cognition and may thus be implicated in various aspects of this mental disorder. Despite differences between human and rodent brain structure and function, genetic mouse models have contributed critical information about brain mechanisms involved in cognitive processes. Here, we summarize discoveries of genetic modifications in mice that impact cognition. Based on functional hypotheses, gene modifications within five model systems are described: 1) dopamine (D1, D2, D3, D4, D5, DAT, COMT, MAO); 2) glutamate (GluR-A, NR1, NR2A, NR2B, GRM2, GRM3, GLAST); 3) GABA (α5, γ2, α4, δGABAA, GABAB(1), GAT1); 4) acetylcholine (nAChRβ2, α7, CHRM1); and 5) calcium (CaMKII-α, neurogranin, CaMKKβ, CaMKIV). We also consider other risk-associated genes for schizophrenia such as dysbindin (DTNBP1), neuregulin (NRG1), disrupted-in-schizophrenia1 (DISC1), reelin and proline dehydrogenase (PRODH). Because of the presumed importance of environmental factors, we further consider genetic modifications within the stress-sensitive systems of corticotropin-releasing factor (CRF), brain-derived neurotrophic factor (BDNF) and the endocannabinoid systems. We highlight the missing information and limitations of cognitive assays in genetically modified mice models relevant to schizophrenia pathology.This article is part of a Special Issue entitled ‘Schizophrenia’

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.