Abstract

The establishment of mouse models of gallstones, and the contribution of mouse models to genetic studies of gallstone disease, as well as the latest advances in the pathophysiology of gallstones from mouse experiments are summarized. The combined uses of genomic strategies and phenotypic studies in mice have successfully led to the identification of many Lith genes, which pave the way for the discovery of human LITH genes. The physical-chemical, genetic, and molecular biological studies of gallstone disease in mice with knockout or transgene of specific target genes have provided many novel insights into the complex pathophysiological mechanisms of this very common hepatobiliary disease worldwide, showing that interactions of five primary defects play a critical role in the pathogenesis of cholesterol gallstones. Based on mouse studies, a new concept has been proposed that hepatic hypersecretion of biliary cholesterol is induced by multiple Lith genes, with insulin resistance as part of the metabolic syndrome interacting with cholelithogenic environmental factors to cause the phenotype. The mouse model of gallstones is crucial for elucidating the physical-chemical and genetic mechanisms of cholesterol crystallization and gallstone formation, which greatly increase our understanding of the pathogenesis of this disease in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.