Abstract

Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of methylmalonyl-CoA mutase (MCM). MMA is associated with significant morbidity and mortality, thus therapies are necessary to help improve quality of life and prevent renal and neurological complications. Transgenic mice carrying an intact human MCM locus have been produced. Four separate transgenic lines were established and characterised as carrying two, four, five or six copies of the transgene in a single integration site. Transgenic mice from the 2-copy line were crossed with heterozygous knockout MCM mice to generate mice hemizygous for the human transgene on a homozygous knockout background. Partial rescue of the uniform neonatal lethality seen in homozygous knockout mice was observed. These rescued mice were significantly smaller than control littermates (mice with mouse MCM gene). Biochemically, these partial rescue mice exhibited elevated methylmalonic acid levels in urine, plasma, kidney, liver and brain tissue. Acylcarnitine analysis of blood spots revealed elevated propionylcarnitine levels. Analysis of mRNA expression confirms the human transgene is expressed at higher levels than observed for the wild type, with highest expression in the kidney followed closely by brain and liver. Partial rescue mouse fibroblast cultures had only 20% of the wild type MCM enzyme activity. It is anticipated that this humanised partial rescue mouse model of MMA will enable evaluation of long-term pathophysiological effects of elevated methylmalonic acid levels and be a valuable model for the investigation of therapeutic strategies, such as cell transplantation.

Highlights

  • Methylmalonyl-CoA mutase (MCM, EC 5.4.99.2) catalyses the conversion of methylmalonyl-CoA to succinyl-CoA

  • The founder line with one copy of the transgene did not have the complete transgene, whilst a mouse with three copies of the transgene was unable to transmit the transgene to the generation

  • We describe here the production of several transgenic MMA mouse models with the potential to trial therapies for the treatment of MMA

Read more

Summary

Introduction

Methylmalonyl-CoA mutase (MCM, EC 5.4.99.2) catalyses the conversion of methylmalonyl-CoA to succinyl-CoA. Deficiency of the enzyme leads to accumulation of methylmalonyl-CoA and to a lesser extent propionyl-CoA, and is termed methylmalonic aciduria (MMA, OMIM 251000). This rare inherited disorder of organic acid metabolism is inherited in an autosomal recessive manner and occurs with an incidence of approximately 1:120,000 [1]. MMA patients that have defects in the MCM gene (MUT) have traditionally been categorised into mut0 and mut- forms based on complete or partial absence of functional apoenzyme respectively [2] Those with the mut0 form usually present within the first days to month of life with progressive severe metabolic acidosis accompanied by poor feeding, vomiting, lethargy, hypotonia and secondary metabolic disturbances causing hyperammonemia, hyperglycinaemia, hypoglycaemia and ketosis [3,4]. Those with the mut- forms may have a less acute presentation, with poor growth and failure to thrive during the first one to two years of life

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call