Abstract

Mutations in endoglin or activin like kinase-1, both involved in the endothelial transforming growth factor-beta signaling pathway, cause the autosomal dominant bleeding disorder hereditary hemorrhagic telangiectasia. We and others have reported mouse models for this disease that share the characteristic phenotype of dilated vessels and sporadic hemorrhage. The reasons for the variable phenotype in hereditary hemorrhagic telangiectasia are not understood. After a detailed immunohistochemical analysis of 129/Ola mice, which are heterozygous for a targeted deletion in the endoglin gene, we observed intrinsic abnormalities in the vascular walls throughout the cutaneous vasculature. Postcapillary venules were dilated, and up to 70% of the vascular wall had no smooth muscle cells. The supporting layers of collagens and elastin were irregular, with thin areas, adding to the fragility of these vessels. A variable hemorrhagic phenotype was observed in which local bleeding is associated not only with fragile vessels but also with regions of inflammation. These findings have relevance to our understanding of the molecular basis of vascular integrity in a wide range of diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.