Abstract

Background & Aims: The relationship between intestinal pathology and immune expulsion of gastrointestinal nematodes remains controversial. Immune expulsion of gastrointestinal helminth parasites is usually associated with Th2 responses, but the effector mechanisms directly responsible for parasite loss have not been elucidated. Mast cell hyperplasia is a hallmark of infection with gastrointestinal nematodes, in particular Trichinella spiralis. Although the precise mechanism by which mast cells induce expulsion of these parasites has not been elucidated, it has been proposed that mast cell mediators, including cytokines and granule chymases, act to create an environment inhospitable to the parasite, part of this being the induction of intestinal inflammation. Therefore, the aims of this study were to dissect the role of mast cells and mast cell proteases in the induction of parasite-induced enteropathy. Methods: Mast cell-deficient W/Wv and mouse mast cell protease-1 (mMCP-1)-deficient mice were infected with T. spiralis, and parasite expulsion, enteropathy, and Th2 responses were determined. Results: Expulsion of the parasite was delayed in both strains of mice compared with wild-type controls; additionally, in both cases, the enteropathy was significantly ameliorated. Although Th2 responses were significantly reduced in mast cell-deficient W/Wv mice, those from mMCP-1-deficient mice were similar to wild-type mice. Additionally, levels of TNF-α and nitric oxide were significantly reduced in both W/Wv and mMCP-1 deficient mice. Conclusions: These results imply that mast cells may contribute to the induction of protective Th2 responses and, importantly, that the intestinal inflammation associated with gastrointestinal helminths is partly mediated by mMCP-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.