Abstract

Fatty acids are essential cellular building blocks and a major energy source. Regardless of their metabolic fate, fatty acids first need to be activated by forming a thioester with a coenzyme A group. This reaction is carried out by acyl-CoA synthetases (ACSs), of which ACSL1 (long-chain acyl-CoA synthetase 1) is an important member. Two bacterial homologues of ACSL1 crystal structures have been solved previously. One is a soluble dimeric protein, and the other is a monomeric peripheral membrane protein. The mammalian ACSL1 is a membrane protein with an N-terminal transmembrane helix. To characterize the mammalian ACSL1, we purified the full-length mouse ACSL1 and reconstituted it into lipid nanodiscs. Using enzymatic assays, mutational analysis, and cryo-electron microscopy, we show that mouse ACSL1 is active as a monomer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call