Abstract

Hyaluronidases are enzymes that mediate the breakdown of hyaluronan (HA), a large polysaccharide abundant in the extracellular matrix of vertebrate tissues. Six genes have been predicted to encode hyaluronidases in humans, but the protein products of only SPAM1, HYAL1, and HYAL2 have been characterized. We have now expressed the mouse Hyal3 gene product, hyaluronidase 3 (Hyal3), in Baby Hamster Kidney (BHK) cells and demonstrated the presence of multiple forms of Hyal3 ranging from approximately 45 to 56 kDa in expression lysates. Complete and partial digestions of the expressed protein with PNGase F showed three N-linked oligosaccharides accounted for all forms of Hyal3 detected in expression lysates. Most of these oligosaccharides were Endo H sensitive, indicating that they were high mannose or hybrid N-linked oligosaccharides. Subcellular fractionation of Hyal3-expressing BHK cells by density gradient centrifugation revealed most Hyal3 in a low-density vesicular population. Low levels of Hyal3 were detected in higher density vesicles, but no colocalization with the late endosomal/lysosomal marker Lamp1 was found by immunofluorescence microscopy. BHK cells stably expressing Hyal3 had increased acid-active hyaluronidase activity, but no such activity was detected when Hyal3 was transfected into Hyaluronidase 1 (Hyal1)-deficient fibroblasts. Overexpression of Hyal3 in BHK cells increased the Hyal1 protein and mRNA levels, suggesting that the increased hyaluronidase activity in these cells was due to Hyal1 rather than Hyal3. The results indicate that Hyal3 overexpressed in cultured cells lacks intrinsic hyaluronidase activity and that Hyal3 may contribute to HA metabolism by augmenting the activity of Hyal1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.