Abstract

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected millions of people worldwide. SARS-CoV-2 belongs to the Betacoronavirus genus, containing the mouse hepatitis virus (MHV), an extensively studied animal coronavirus. Since MHV and SARS-CoV-2 share the same genus, MHV could offer insights relative to SARS-CoV-2 studies. MHV-3 strain causes hepatitis and cellular injury, making MHV-3 infection one of the best models for this debilitating disease. Surrogate coronaviruses have been used for virus resistance and inactivation studies, and although real‐life conditions using SARS-CoV-2 should be encouraged, their use needs to be balanced with safety and costs. MHV can be manipulated under BSL2 laboratory conditions, unlike SARS-CoV-2, making it a model for studying the virucidal effects on coronaviruses. In this study, we used the betacoronavirus MHV-3 as a model to investigate the virucidal activity of an air disinfection equipment named STR Solution®, an air sterilizer with patented technology. MHV-3 was dried on different surfaces and exposed at varying distances from the STR Solution® equipment and at different exposure times. The residual infectivity was evaluated using the endpoint method. There was not a significant reduction (mean p-value = 0.4) of the viral titer under STR Solution® exposition. STR Solution® caused a slight decrease of the infectious particles’ titer (> 1 log10) only under the following conditions: polypropylene at 3 m, for 1 and 3 h (1.2 log10 reduction TCID50) and Sus domesticus skin at 0.05 m, for 1 h (1.3 log10 reduction TCID50), and at 3 m for 1 h (1.2 log10 reduction TCID50). These and other studies confirm the usefulness of this model to evaluate virucidal activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.