Abstract

SummaryMany viruses, including coronaviruses, induce host translational shutoff, while maintaining synthesis of their own gene products. In this study we performed genome‐wide microarray analyses of the expression patterns of mouse hepatitis coronavirus (MHV)‐infected cells. At the time of MHV‐induced host translational shutoff, downregulation of numerous mRNAs, many of which encode protein translation‐related factors, was observed. This downregulation, which is reminiscent of a cellular stress response, was dependent on viral replication and caused by mRNA decay. Concomitantly, phosphorylation of the eukaryotic translation initiation factor 2α was increased in MHV‐infected cells. In addition, stress granules and processing bodies appeared, which are sites for mRNA stalling and degradation respectively. We propose that MHV replication induces host translational shutoff by triggering an integrated stress response. However, MHV replication per se does not appear to benefit from the inhibition of host protein synthesis, at least in vitro, since viral replication was not negatively affected but rather enhanced in cells with impaired translational shutoff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.