Abstract

Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice, compared with RML- and 22L-inoculated Prnp0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc.

Highlights

  • Prions are causative agents of transmissible spongiform encephalopathies, or prion diseases, a group of fatal neurodegenerative disorders, which include Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals [1,2]

  • These results indicate that the conversion of PrPC into PrPSc is an essential event in the pathogenesis of prion disease

  • We previously reported that Prnp0/0 mice used in this study developed cerebellar ataxia at 469646 days after birth due to ectopic expression of a Prion Protein (PrP)-like molecule Dpl in their brains [12,14], and that the ataxia was not rescued in Tg(MHM2D2388)/Prnp0/0 mice [11]

Read more

Summary

Introduction

Prions are causative agents of transmissible spongiform encephalopathies, or prion diseases, a group of fatal neurodegenerative disorders, which include Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals [1,2]. We and others have shown that mice devoid of PrPC (Prnp0/0) are resistant to prions, neither developing the disease nor producing PrPSc or propagating the prions even after inoculation with the prions [5,6,7,8]. These results indicate that the conversion of PrPC into PrPSc is an essential event in the pathogenesis of prion disease. Prnp0/0 mice expressing mouse PrP with Nterminal residues 23-88 deleted, or Tg(PrPD23-88)/Prnp0/0 mice, developed prion disease after inoculation with RML scrapie prions, with accumulation of PrPScD23-88 in their brains [9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.