Abstract
N-(3'4'-dimethoxycinnamoyl)-anthranilic acid (tranilast) is a drug that has been shown to reduce the incidence of restenosis after angioplasty in middle-scale clinical trials. Despite clinical interest in this drug, the pharmacological actions of tranilast remain relatively unexplored at a molecular level. We evaluated the effects of tranilast on vascular smooth muscle cell (VSMC) proliferation in wild-type mice and in mice lacking a cyclin-dependent kinase inhibitor, p21(WAF1) (p21). Tranilast potently inhibited the proliferation of VSMC cultures derived from wild-type mice, but VSMCs derived from p21-deficient (p21-/-) mice were unaffected by this treatment. In a mouse femoral artery model of vascular injury, tranilast administration to wild-type mice led to an upregulation of p21 expression and a decrease in the number of proliferating VSMCs, as determined by immunostaining for proliferating cell nuclear antigen. In contrast, tranilast had no effect on the number of proliferating cell nuclear antigen-positive cells in the injured arteries of p21-/- mice. Administration of tranilast significantly reduced the neointimal VSMC hyperplasia in wild-type mice at 4 weeks but had no effect on lesion formation in p21-/- mice. Our findings provide genetic evidence that tranilast inhibits intimal hyperplasia via a p21-dependent pathway, an activity that may contribute to its efficacy in the prophylactic treatment of postangioplasty restenosis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arteriosclerosis, thrombosis, and vascular biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.