Abstract

Molecular mechanisms underlying the effects of Fyn on cell morphology, pseudopodium movement, and cell migration were investigated. The Fyn gene was subcloned into pEGFP-N1 to produce pEGFP-N1-Fyn. Chinese hamster ovary (CHO) cells were transfected with pEGFP-N1-Fyn. The expression of Fyn mRNA and proteins was monitored by reverse transcription-PCR and Western blotting. Additionally, transfected cells were stained with 4',6-diamidino-2-phenylindole and a series of time-lapse images was taken. Sequences of the recombinant plasmids pMD18-T-Fyn and pEGFP-N1-Fyn were confirmed by sequence identification using National Center for Biotechnology Information in USA, and Fyn expression was detected by RT-PCR and Western blotting. The morphology of CHO cells transfected with the recombinant vector was significantly altered. Fyn expression induced filopodia and lamellipodia formation. Based on these results, we concluded that overexpression of mouse Fyn induces the formation of filopodia and lamellipodia in CHO cells, and promotes cell movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.