Abstract

Embryonic stem (ES) cells have been proposed as candidates for cell replacement therapy in patients with intestinal failure because these cells can be expanded indefinitely without losing their pluripotent phenotype. We investigated the differentiation capacity of mouse ES cells into gut-like structures, including intestinal stem cells, and defined culture conditions for efficient induction of formation of these structures. ES cell-derived gut-like structures (ES-guts) were reproducibly induced in developing embryoid bodies (EBs) by day 21 of differentiation culture. ES-guts contained an endodermal epithelium, a smooth muscle layer, interstitial cells of Cajal, and enteric neurons and showed spontaneous contraction. Transplantation of ES-guts under the kidney capsules of immunodeficient mice induced formation of highly differentiated epithelium composed of absorptive cells and goblet cells in the grafts. Immunoreactivity for Musashi-1 (Msi-1), a marker of intestinal stem cells, was detected in 1.9% of the columnar epithelial cells in the graft. Culture with 0.1% dimethyl sulfoxide increased the numbers of ES-guts in EBs, and serum-replacement (SR) culture, in comparison to standard ES culture containing 15% serum, increased the area ratio of ES-guts to EBs. SR culture also promoted maturation of epithelium to form a single layer of columnar epithelial cells, including absorptive cells and goblet cells. Expression of Msi-1 mRNA and protein was significantly enhanced when EBs were cultured under SR conditions. In conclusion, SR conditions efficiently induce formation of ES-guts and promote differentiation of epithelium, including intestinal stem cells. These results suggest the feasibility of cell-based therapy for intestinal failure based on ES cell culture systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.