Abstract

Grooming in the mouse features hand licking and symmetric and asymmetric arm and hand “strokes” over the face and body to maintain pelage. Grooming is syntactically organized but the structure of individualized movements of the arm, hand, and tongue have not been examined. Here spontaneous and water-induced grooming was video recorded in free-moving and head-fixed mice and subject to frame-by-frame video inspection and kinematic analysis using Physics Tracker. All groom arm and hand movements had a structure similar to that described for reach-to-eat movements. The movement included the hand lifting from the floor to supinate with the digits flexing and closed to a collect position, an aim position directed to a groom target, an advance to the target during which the fingers extend and open and the hand pronates, a grasp of a target on the snout, nose, or vibrissae, and a withdraw to the mouth where licking occurs, or a return to the starting position. This structure was present in individual unilateral forelimb groom strokes, in bilateral symmetric, or asymmetric groom strokes, and comprised the individuated components of a sequence of groom movements. Reach-to-groom movements could feature an ulnar adduction that positions the ulnar portion of the hand including and the thumb across the eye and nose, a movement that aids Hardarian fluid spreading. It is proposed that the mouse thumb nail is an anatomical feature that minimizes damage to the eye or nose that might be incurred by a claw. This analysis of the reach-to-groom movement provides insights into the flexibility of hand use in adaptive behavior, the evolution of skilled reaching movements, the neural control of reaching movements and the presence of the thumb nail in the mouse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call