Abstract

AimsSystemic anaphylaxis is life-threatening, and its pathophysiology is not fully clarified. Mice are frequently used for experimental study on anaphylaxis. However, the hemodynamic features and mechanisms of mouse anaphylactic hypotension remain unknown. Therefore, we determined mechanisms of systemic and pulmonary vascular response to anaphylactic hypotension in anesthetized BALB/c mice by using receptor antagonists of chemical mediators. Main methodsAnaphylaxis was actively induced by an intravenous injection of the ovalbumin antigen into open-chest artificially ventilated sensitized mice. Mean arterial pressure (MAP), pulmonary arterial pressure (PAP), left atrial pressure, central venous pressure, and aortic blood flow (ABF) were continuously measured. Key findingsIn sensitized control mice, MAP and ABF showed initial, transient increases, followed by progressive decreases after the antigen injection. Total peripheral resistance (TPR) did not decrease, while PAP initially and transiently increased to 18.5±0.5mmHg and pulmonary vascular resistance (PVR) also significantly increased. The antigen-induced decreases in MAP and ABF were attenuated by pretreatment with either a platelet-activating factor (PAF) receptor antagonist, CV6209, or a histamine H1 receptor antagonist, diphenhydramine, and were abolished by their combination. Diphenhydramine augmented the initial increases in PAP and PVR, but did not affect the decrease of the corresponding MAP fall. The antagonists of either leukotriene C4 or serotonin, alone or in combination with CV6209, exerted no significant effects. SignificanceMouse anaphylactic hypotension is caused by a decrease in cardiac output but not vasodilatation, via actions of PAF and histamine. The slight increase in PAP is not involved in mouse anaphylactic hypotension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call