Abstract

A mouse gene, Akr1cl, encodes a member of the aldo-keto reductase 1C subfamily (AKR1CL), whose function, however, remains unknown. Here, we show that the recombinant AKR1CL is an NADPH-dependent reductase of prostaglandin (PG) D2 (Km 3.2 μM, kcat 5.6 min−1) and oxidizes 9α,11β-PGF2 (Km 30 μM, kcat 3.3 min−1) in the reverse reaction. In contrast, it did not exhibit oxidoreductase activity towards other PGs (E2, A1, B2 and F2α), steroids and nonsteroidal carbonyls and alcohols, which are substrates of other mammalian AKR1C subfamily enzymes. The enzyme activity was inhibited by estradiol, quercetin, benzbromarone, ethacrynic acid and flufenamic acid, of which estradiol was the most potent competitive inhibitor (Ki 3.2 μM). The mRNA for AKR1CL was expressed abundantly in mouse testis, ovary and adrenal gland, and at low levels in the brain, lung, small intestine and prostate. Thus, AKR1CL is the first PGD2 11-ketoreductase with strict substrate specificity in mammals. The site-directed mutagenesis of P85 in AKR1CL to the corresponding residue, W, in other mammalian AKR1C subfamily enzymes resulted in broad substrate specificity for nonsteroidal carbonyls and alcohols, suggesting that P85 plays a critical role in the strict specificity for PGD2 and 9α,11β-PGF2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call