Abstract

Vulnerability assessment for elements at risk is an important component in the framework of risk assessment. The vulnerability of buildings affected by torrent processes can be quantified by vulnerability functions that express a mathematical relationship between the degree of loss of individual elements at risk and the intensity of the impacting process. Based on data from the Austrian Alps, we extended a vulnerability curve for residential buildings affected by fluvial sediment transport processes to other torrent processes and other building types. With respect to this goal to merge different data based on different processes and building types, several statistical tests were conducted. The calculation of vulnerability functions was based on a nonlinear regression approach applying cumulative distribution functions. The results suggest that there is no need to distinguish between different sediment-laden torrent processes when assessing vulnerability of residential buildings towards torrent processes. The final vulnerability functions were further validated with data from the Italian Alps and different vulnerability functions presented in the literature. This comparison showed the wider applicability of the derived vulnerability functions. The uncertainty inherent to regression functions was quantified by the calculation of confidence bands. The derived vulnerability functions may be applied within the framework of risk management for mountain hazards within the European Alps. The method is transferable to other mountain regions if the input data needed are available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call