Abstract

AbstractThe 1989, Mw = 6.9 Loma Prieta earthquake resulted in tens of lives lost and cost California almost 3% of its gross domestic product. Despite widespread damage, the earthquake did not clearly rupture the surface, challenging the identification and characterization of these hidden hazards. Here, we show that they can be illuminated by inverting fluvial topography for slip‐and moment accrual‐rates—fundamental components in earthquake hazard assessments—along relief‐generating geologic faults. We applied this technique to thrust faults bounding the mountains along the western side of Silicon Valley in the San Francisco Bay Area, and discovered that these structures may be capable of generating a Mw = 6.9 earthquake every 250–300 years based on moment accrual rates. This method may be deployed broadly to evaluate seismic hazard in developing regions with limited geological and geophysical information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.