Abstract
We study the partial Brauer monoid and its planar submonoid, the Motzkin monoid. We conduct a thorough investigation of the structure of both monoids, providing information on normal forms, Green's relations, regularity, ideals, idempotent generation, minimal (idempotent) generating sets, and so on. We obtain necessary and sufficient conditions under which the ideals of these monoids are idempotent-generated. We find formulae for the rank (smallest size of a generating set) of each ideal, and for the idempotent rank (smallest size of an idempotent generating set) of the idempotent-generated subsemigroup of each ideal; in particular, when an ideal is idempotent-generated, the rank and idempotent rank are equal. Along the way, we obtain a number of results of independent interest, and we demonstrate the utility of the semigroup theoretic approach by applying our results to obtain new proofs of some important representation theoretic results concerning the corresponding diagram algebras, the partial (or rook) Brauer algebra and Motzkin algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.