Abstract
We investigate the Mott transitions in two-orbital Hubbard systems. Applying the dynamical mean field theory and the self-energy functional approach, we discuss the stability of itinerant quasi-particle states in each band. It is shown that separate Mott transitions occur at different Coulomb interaction strengths in general. On the other hand, if some special conditions are satisfied for the interactions, spin and orbital fluctuations are equally enhanced at low temperatures, resulting in a single Mott transition. The phase diagrams are obtained at zero and finite temperatures. We also address the effect of the hybridization between two orbitals, which induces the Kondo-like heavy fermion states in the intermediate orbital-selective Mott phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.