Abstract

At zero temperature, the Kotliar–Ruckenstein slave boson mean-field approach is applied to the dynamic Hubbard model. In this paper, the influences of the dynamics of the auxiliary boson field on the Mott transition are investigated. At finite boson frequency, the Mott-type features of the Hubbard model is found to be enhanced by increasing the pseudospin coupling parameter g. For sufficiently large pseudospin coupling g, the Mott transition occurs even for modest values of the bare Hubbard interaction U. The lack of electron–hole symmetry is highlighted through the quasiparticle weight. Our results are in good agreement with the ones obtained by two-site dynamical mean-field theory and determinant quantum Monte Carlo simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.