Abstract

We investigate the Mott transition in the kagomé lattice Hubbard model using a cluster extension of dynamical mean field theory. The calculation of the double occupancy, the density of states, and the static and dynamical spin correlation functions demonstrates that the system undergoes the first-order Mott transition at the Hubbard interaction U/W approximately 1.4 (W:bandwidth). In the metallic phase close to the Mott transition, we find the strong renormalization of three distinct bands, giving rise to the formation of heavy quasiparticles with strong frustrated interactions. It is elucidated that the quasiparticle states exhibit anomalous behavior in the temperature-dependent spin correlation functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.