Abstract

We present an ab initio analysis for the ground-state properties of a correlated organic compound $\kappa$-(BEDT-TTF)2Cu(NCS)2. First, we derive an effective two-dimensional low-energy model from first principles, having short-ranged transfers and short-ranged Coulomb and exchange interactions. Then, we perform many-variable variational Monte Carlo calculations for this model and draw a ground-state phase diagram as functions of scaling parameters for the onsite and off-site interactions. The phase diagram consists of three phases; a paramagnetic metallic phase, an antiferromagnetic (Mott) insulating phase, and a charge-ordered insulating phase. In the phase diagram, the parameters for the real compound are close to the first-order Mott transition, being consistent with experiments. We show that the off-site Coulomb and exchange interactions affect the phase boundary; (i) they appreciably stabilize the metallic state against the Mott insulating phase and (ii) enhance charge fluctuations in a wide parameter region in the metallic phase. We observe arc-like structure in Fermi surface around the region where the charge fluctuations are enhanced. Possible relevance of the charge fluctuations to the experimentally observed dielectric anomaly in the $\kappa$-BEDT-TTF family compounds is also pointed out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.