Abstract

In this work, thermoelectric properties of Bi and Sb atoms substituted PbTe material were predicted by Mott theory through electronic structure calculation. This calculation has been carried by the first-principles DV-Xα molecular orbital method based on Hartree-Fock-Slater approximation. The Pb14Te13, Pb13SbTe13 and Pb13BiTe13 small clusters with a cubic rocksalt structure (Fm-3m; 225) were designed to be performed PbTe, Pb0.75Sb0.25Te and Pb0.75Bi0.25Te materials, respectively. The electronic structure showed that the high symmetry crystal structure, spin energy levels, partial spin density of states and electron charge density. The energy gap and Fermi level have been obtained from energy levels and density of state to be evaluated of electrical conductivity and Seebeck coefficient within Mott's theory predication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call