Abstract

We present evidence for Mott quantum criticality in an anisotropic two-dimensional system of coupled Hubbard chains at half-filling. In this scenario emerging from variational cluster approximation and cluster dynamical mean-field theory, the interchain hopping t_{⊥} acts as a control parameter driving the second-order critical end point T_{c} of the metal-insulator transition down to zero at t_{⊥}^{c}/t≃0.2. Below t_{⊥}^{c}, the volume of the hole and electron Fermi pockets of a compensated metal vanishes continuously at the Mott transition. Above t_{⊥}^{c}, the volume reduction of the pockets is cut off by a first-order transition. We discuss the relevance of our findings to a putative quantum critical point in layered organic conductors, whose location remains elusive so far.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call