Abstract

A major challenge in the field of neurocomputing is to mimic the brain's behavior by implementing artificial synapses and neurons directly in hardware. Toward that purpose, many researchers are exploring the potential of new materials and new physical phenomena. Recently, a new concept of the Leaky Integrate and Fire (LIF) artificial neuron was proposed based on the electric Mott transition in the inorganic Mott insulator GaTa4Se8. In this work, we report on the LIF behavior in simple two-terminal devices in three chemically very different compounds, the oxide (V0.89Cr0.11)2O3, the sulfide GaMo4S8, and the molecular system [Au(iPr-thiazdt)2] (C12H14AuN2S8), but sharing a common feature, their Mott insulator ground state. In all these devices, the application of an electric field induces a volatile resistive switching and a remarkable LIF behavior under a train of pulses. It suggests that the Mott LIF neuron is a general concept that can be extended to the large class of Mott insulators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.