Abstract

We present a new method, based on the combination of analytical and numerical techniques within the framework of the dynamical mean-field theory (DMFT). Building upon numerically exact results obtained in an improved quantum Monte Carlo (QMC) scheme, 10th order strong-coupling perturbation theory for the Hubbard model on the Bethe lattice is extrapolated to infinite order. We obtain continuous estimates of energy E and double occupancy D with unprecedented precision O(10^{-5}) for the Mott insulator above its stability edge U_{c1}=4.78 as well as critical exponents. The relevance for recent experiments on Cr-doped V_2O_3 is pointed out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call