Abstract
We investigate the ground state properties of a non-locally coupled bosonic system in a bilayer optical superlattice by considering bosons in one layer to be of softcore in nature and separately allowing two and three body hardcore constraints on the other layer. We find that the presence of different constraints on bosons in one layer influences the overall phase diagram exhibiting various Mott insulator phases at incommensurate densities due to the presence of the superlattice potential apart from the usual Mott insulators at commensurate densities. Moreover, the presence of two or three-body constraints significantly modifies the Mott insulator-Superfluid phase transition points as a function of the superlattice potential. Due to the various competing interactions, constraints and superlattice potential the phase diagrams exhibit significantly different features. We obtain the complete phase diagrams by using the cluster-mean-field theory approach. We further extend this work to a coupled two-leg ladder superlattice where we obtain similar physics using the density matrix renormalization group method .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.