Abstract

Introducing photo-responsive molecules offers an attractive approach for remote and selective control and dynamic manipulation of material properties. However, it remains highly challenging how to use a minimal amount of photo-responsive units to optically modulate materials that are inherently inert to light irradiation. Here we show the application of a light-driven rotary molecular motor as a "motorized photo-modulator" to endow a typical H-bond-based gel system with the ability to respond to light irradiation and create a reversible sol-gel transition. The key molecular design feature is the introduction of a minimal amount (2 mol %) of molecular motors into the supramolecular network as photo-switchable non-covalent crosslinkers. Advantage is taken of the subtle interplay of the large geometry change during photo-isomerization of the molecular motor guest and the dynamic nature of a supramolecular gel host system. As a result, a tiny amount of molecular motors is enough to switch the mechanical modulus of the entire supramolecular systems. This study proves the concept of designing photo-responsive materials with minimum use of non-covalent light-absorbing units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.