Abstract

To determine the similarity of motor variability in proximal muscles, young and elderly adults performed steady elbow flexor (EF) and knee extensor (KE) contractions separately (SEP; at 2.5, 30, and 65% of maximum) and simultaneously (SIM; at 2.5 and 30% of maximum), with (VIS) and without (NVIS) visual feedback. Between-muscle correlations of fluctuation amplitude (SD, CV of force), time-based cross-correlations (CC), force power spectra, and frequency-based coherence (COH) values were computed from the concurrent force records. Correlations of fluctuation amplitude ranged from r = 0.34 to 0.86 (P < 0.05) across forces, SEP/SIM, and vision conditions, but were absent for 2.5% NVIS. The relatively low CC values for SIM (r = 0.22-0.33) were stronger for elderly than young adults. The vast majority of the power in the force fluctuations was <4 Hz for all records. Weak COH peaks were only observed <2 Hz for elderly and between 3 and 4 Hz for young, and COH was slightly stronger for elderly below 3 Hz for the 30% MVC target force. The correlations in force fluctuation amplitude suggest that the EF and KE motor neuron pools similarly transform the oscillating synaptic input and may influence each other. The cross-correlations suggest the remote motor neuron pools are influenced similarly in time by a common source of excitation, perhaps more coherently for elderly adults at low frequencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.