Abstract
The myosin heavy chain (MHC) content and spatial distribution of the fibers of 11 motor units (MUs) of the rabbit masseter muscle were determined. The fibers of single MUs were visualized in whole-muscle serial sections by a negative periodic acid/Schiff reaction for glycogen after they had been depleted of glycogen by extracellular stimulation of their motoneuron in the trigeminal motor nucleus. The MHC isoforms present in the fibers were characterized by monoclonal antibodies. Individual fibers appeared to contain from one to three MHC isoforms. In six cases, all fibers of a motor unit had an identical MHC content; in five cases, different fiber types were found in a single unit. The fiber number per MU varied between 40 and 424, the territory size between 1.1 and 11.0 mm2 (of a total muscle cross-section of 200 mm2), and fiber density between 6 and 17 MU fibers per 100 muscle fibers. In the multipennate masseter, the fibers were usually restricted to a single anatomical compartment. In comparison with leg muscles, the fibers of the masseter motor units, although similar in number, were restricted to relatively smaller subvolumes of the muscle and thus reached higher densities in their territories. The small territories are the anatomical substrate for the observed heterogeneity of motor behavior. Since the different anatomical compartments of the masseter differ with respect to their biomechanical capabilities, this makes this muscle multifunctional in the exertion of complex motor tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.