Abstract

BackgroundThe pathophysiology of non-specific arm pain (NSAP) is unclear and the diagnosis is made by excluding other specific upper limb pathologies, such as lateral epicondylitis or cervical radiculopathy. The purpose of this study was to determine: (i) if the quantitative parameters related to motor unit potential morphology and/or motor unit firing patterns derived from electromyographic (EMG) signals detected from an affected muscle of patients with NSAP are different from those detected in the same muscle of individuals with lateral epicondylitis (LE) and/or control subjects and (ii) if the quantitative EMG parameters suggest that the underlying pathophysiology in NSAP is either myopathic or neuropathic in nature.MethodsSixteen subjects with NSAP, 11 subjects with LE, eight subjects deemed to be at-risk for developing a repetitive strain injury, and 37 control subjects participated. A quantitative electromyography evaluation was completed using decomposition-based quantitative electromyography (DQEMG). Needle- and surface-detected EMG signals were collected during low-level isometric contractions of the extensor carpi radialis brevis (ECRB) muscle. DQEMG was used to extract needle-detected motor unit potential trains (MUPTs), and needle-detected motor unit potential (MUP) and surface detected motor unit potential (SMUP) morphology and motor unit (MU) firing rates were compared among the four groups using one-way analysis of variance (ANOVA). Post hoc analyses were performed using Tukey's pairwise comparisons.ResultsSignificant group differences were found for all MUP variables and for MU firing rate (p < 0.006). The post-hoc analyses revealed that patients with NSAP had smaller MUP amplitude and SMUP amplitude and area compared to the control and LE groups (p < 0.006). MUP duration and AAR values were significantly larger in the NSAP, LE and at-risk groups compared to the control group (p < 0.006); while MUP amplitude, duration and AAR values were smaller in the NSAP compared to the LE group. SMUP duration was significantly shorter in the NSAP group compared to the control group (p < 0.006). NSAP, LE and at-risk subjects had lower mean MU firing rates than the control subjects (p < 0.006).ConclusionThe size-related parameters suggest that the NSAP group had significantly smaller MUPs and SMUPs than the control and LE subjects. Smaller MUPs and SMUPs may be indicative of muscle fiber atrophy and/or loss. A prospective study is needed to confirm any causal relationship between smaller MUPs and SMUPs and NSAP as found in this work.

Highlights

  • The pathophysiology of non-specific arm pain (NSAP) is unclear and the diagnosis is made by excluding other specific upper limb pathologies, such as lateral epicondylitis or cervical radiculopathy

  • motor unit potential (MUP) durations were significantly longer in the NSAP, lateral epicondylitis (LE) and at-risk groups compared to the control group (p < 0.006), but significantly shorter in the NSAP group compared to the at-risk and LE groups; surface detected motor unit potential (SMUP) duration was significantly shorter in the NSAP group compared to the control and at-risk groups (p < 0.006)

  • All the detected MUP size-related parameters revealed that the NSAP group had significantly smaller MUPs than the control and LE subjects

Read more

Summary

Introduction

The pathophysiology of non-specific arm pain (NSAP) is unclear and the diagnosis is made by excluding other specific upper limb pathologies, such as lateral epicondylitis or cervical radiculopathy. The wrist extensor muscles have been implicated in a condition called non-specific arm pain (NSAP) or work-related upper limb disorder, which, as the names suggest, has an unknown pathophysiology. Patients with NSAP complain of diffuse forearm pain during and after tasks that require repetitive wrist motion, and they have muscle pain and tenderness on palpation that is not consistent with lateral epicondylitis (LE), a known tendinopathy resulting from repetitive wrist extension. A diagnosis of NSAP is made when there is an absence of objective clinical signs associated with known upper limb disorders, such as medial or lateral epicondylitis, deQuervain's tendonitis and cervical radiculopathy [4]. Because we do not know what structures are affected and in what way, we cannot properly diagnose or treat this form of repetitive strain injury

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call