Abstract
Animals change their behavior depending on external circumstances, internal factors, and their interactions. Locomotion state is a crucial internal factor that profoundly affects sensory perception and behavior. However, studying the behavioral impacts of locomotion state in free-moving animals has been challenging due to difficulty in reproducing quantitatively identical stimuli in freely moving animals. We utilized a closed-loop controlled servosphere treadmill system, enabling unrestricted confinement and orientation of small animals, and investigated wind-induced escape behavior in freely moving crickets. When stimulated during locomotion, the crickets quickly stopped before initiating escape behavior. Moving crickets exhibited a higher probability of escape response compared to stationary crickets. The threshold for pausing response in moving crickets was also much lower than the escape response threshold. Moving crickets had delayed reaction times for escape and greater variance in movement direction compared to stationary crickets. The locomotion-related response delay may be compensated by an elevated sensitivity to airflow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.