Abstract

Motor self-regulation is the ability to inhibit a prepotent response to a salient cue in favour of a more appropriate response. Motor self-regulation is an important component of the processes that interact to generate effective inhibitory control of behaviour, and is theorized to be a prerequisite of complex cognitive abilities in humans and other animals. In a large comparative study using the cylinder task, motor self-regulation was studied in 36 different species, mostly birds and primates. To broaden the range of species to comprehensively evaluate this phenomenon, motor self-regulation was studied in the domestic goat, which is a social ungulate species and moderate food specialist. Using the cylinder task, goats were first trained to perform a detour-reaching response to retrieve a reward from an opaque cylinder. Subsequently, an otherwise identical transparent cylinder was substituted for the opaque cylinder over 10 test trials. The goats’ ability to resist approaching the visible reward directly by touching the cylinder and to retain the trained detour-reaching response was measured. The results indicated that goats showed motor self-regulation at a level comparable to or better than that of many of the bird and mammal species tested to date. However, the individual reaction patterns revealed large intra- and inter-individual variability regarding motor self-regulation. An improvement across trials was observed only in latency to make contact with the reward; no improvement in the proportion of accurate trials was observed. A short, distinct pointing gesture by the experimenter during baiting did not have any impact on the side of the cylinder to which the goats detoured. In half of goats, individual side biases were observed when detouring to the side of the cylinder, but there was no bias at the population level for either the left or right side. The results underline the need for a detailed examination of individual performance and additional measures to achieve a complete understanding of animal performance in motor self-regulation tasks.

Highlights

  • In recent years, a large body of research has studied a behavioural phenomenon described as inhibitory control or self-control in various species of birds and mammals

  • While nine goats detoured the cylinder correctly in seven or more trials, 11 animals touched the exterior of the cylinder in approximately every other trial

  • The goats in this study were able to retrieve a reward by showing motor self-regulation at a level comparable to or better than that of many other mammal and bird species tested to date

Read more

Summary

Introduction

A large body of research has studied a behavioural phenomenon described as inhibitory control or self-control in various species of birds and mammals. This phenomenon is defined as an individual’s ability to inhibit an impulsive or prepotent response, normally in reaction to a salient cue or stimulus, in favour of a more appropriate response (Bray, MacLean & Hare, 2014; MacLean et al, 2014; Jelbert, Taylor & Gray, 2016; How to cite this article Langbein (2018), Motor self-regulation in goats (Capra aegagrus hircus) in a detour-reaching task. Studies of different primate species have attributed well-developed inhibitory skills to living in complex social groups and have found that higher levels of fission–fusion dynamics are correlated with better inhibitory control and higher behavioural flexibility (Amici, Aureli & Call, 2008; Maclean et al, 2013)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.