Abstract
In this paper we have tried to build effective model for classification of motor oils by base stock and viscosity class. Three (3) sets of near infrared (NIR) spectra (1125, 1010, and 1050 spectra) were used for classification of motor oils into 3 or 4 classes according to their base stock (synthetic, semi-synthetic, and mineral), kinematic viscosity at low temperature (SAE 0W, 5W, 10W, and 15W) and kinematic viscosity at high temperature (SAE 20, 30, 40, and 50). The abilities of three (3) different classification methods: regularized discriminant analysis (RDA), soft independent modelling of class analogy (SIMCA), and multilayer perceptron (MLP) – were also compared. In all cases NIR spectroscopy was found to be quite effective for motor oil classification. MLP classification technique was found to be the most effective one.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.