Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease that culminates in paralysis and death. Here, we present our analyses of publicly available multiOMIC data sets generated using motor neurons from ALS patients and control cohorts. Functional annotation of differentially expressed genes in induced pluripotent stem cell (iPSC)-derived motor neurons generated from patients with mutations in C9ORF72 (C9-ALS) suggests elevated expression of genes that pertain to extracellular matrix (ECM) and cell adhesion, inflammation and TGFβ targets. On the other end of the continuum, we detected diminished expression of genes repressed by quiescence-promoting E2F4/DREAM complex. Proteins whose abundance was significantly altered in C9-ALS neurons faithfully recapitulated the transcriptional aberrations. Importantly, patterns of gene expression in spinal motor neurons dissected from C9-ALS or sporadic ALS patients were highly concordant with each other and with the C9-ALS iPSC neurons. In contrast, motor neurons from patients with mutations in SOD1 exhibited dramatically different signatures. Elevated expression of gene sets such as ECM and cell adhesion genes occurs in C9 and sporadic ALS but not SOD1-ALS. These analyses indicate that despite the similarities in outward manifestations, transcriptional and proteomic signatures in ALS motor neurons can vary significantly depending on the identity of the causal mutations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.