Abstract

The aim of this study is to investigate changes in lumbar motor neurons induced by mechanical nerve root compression using an in vivo model. This study is to investigate the changes of lumbar motor neuron induced by mechanical nerve root compression using in vivo model. The effect of axonal flow disturbance induced by nerve root compression was determined in lumbar motor neuron. The lumbar motor neuron should not be overlooked when considering the mechanism of weakness, so it is important to understand the morphologic and functional changes that occur in motor neurons of the spinal cord as a result of nerve root compression. However, few studies have looked at changes of neurons within the caused by disturbance of axonal flow, the axon reaction, chromatolysis, and cell death as a result of mechanical compression of the ventral root. In mongrel dogs, the seventh lumbar nerve root was compressed for 1 week, or 3 weeks using a clip. Morphologic changes of the motor neurons secondary to the axon reaction were examined by light and electron microscopy. Light and electron microscopy showed central chromatolysis of motor neurons in the lumbar cord from 1 week after the start of compression. After 3 weeks, some neurons undergoing apoptosis were seen in the ventral horn. It is important to be aware that, in patients with nerve root compression due to lumbar disc herniation or lumbar canal stenosis, dysfunction is not confined to degeneration at the site of compression but also extends to the motor neurons within the lumbar cord as a result of the axon reaction. Patients with weakness of lower leg should therefore be fully informed of the fact that these symptoms will not resolve immediately after surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.