Abstract

The nervous system is sensitive to statistical regularities of the external world and forms internal models of these regularities to predict environmental dynamics. Given the inherently social nature of human behavior, being capable of building reliable predictive models of others' actions may be essential for successful interaction. While social prediction might seem to be a daunting task, the study of human motor control has accumulated ample evidence that our movements follow a series of kinematic invariants, which can be used by observers to reduce their uncertainty during social exchanges. Here, we provide an overview of the most salient regularities that shape biological motion, examine the role of these invariants in recognizing others' actions, and speculate that anchoring socially-relevant perceptual decisions to such kinematic invariants provides a key computational advantage for inferring conspecifics' goals and intentions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.