Abstract

A Fitts’ task was used to investigate how tools are incorporated into the internal representations that underlie pointing movements, and whether such knowledge can be generalized across tasks. We measured the speed-accuracy trade-offs that occurred as target width was varied for both real and imagined movements. The dynamics of the pointing tool used in the task were manipulated--regular pen, top-heavy tool, and bottom-heavy tool--to test the fidelity of internal representations of movements involving the use of novel tools. To test if such representations can be generalized, the orientation of the pointing task was also manipulated (horizontal vs. vertical). In all conditions, both real and imagined performances conformed to the speed-accuracy relationship described by Fitts’ law. We found significant differences in imagined MTs for the two weighted tools compared to the regular pen, but not between the weighted tools. By contrast, real movement durations differed between all tools. These results indicate that even relatively brief experience using novel tools is sufficient to influence the internal representation of the dynamics of the tool-limb system. However, in the absence of feedback, these representations do not make explicit differences in performances resulting from the unique dynamics of these weighted tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.