Abstract

Not much is known about how well stroke patients are able to perform motor imagery (MI) and which MI abilities are preserved after stroke. We therefore applied three different MI tasks (one mental chronometry task, one mental rotation task, and one EEG-based neurofeedback task) to a sample of postacute stroke patients (n = 20) and age-matched healthy controls (n = 20) for addressing the following questions: First, which of the MI tasks indicate impairment in stroke patients and are impairments restricted to the paretic side? Second, is there a relationship between MI impairment and sensory loss or paresis severity? And third, do the results of the different MI tasks converge? Significant differences between the stroke and control groups were found in all three MI tasks. However, only the mental chronometry task and EEG analysis revealed paresis side-specific effects. Moreover, sensitivity loss contributed to a performance drop in the mental rotation task. The findings indicate that although MI abilities may be impaired after stroke, most patients retain their ability for MI EEG-based neurofeedback. Interestingly, performance in the different MI measures did not strongly correlate, neither in stroke patients nor in healthy controls. We conclude that one MI measure is not sufficient to fully assess an individual's MI abilities.

Highlights

  • Stroke is a leading cause of chronic motor impairment in adults

  • By comparing different objective behavioral and electrophysiological Motor imagery (MI) measures, we addressed three research questions: First, we asked which of the MI tasks indicate MI impairment in stroke patients and whether these impairments are specific to the paretic side

  • Our first study aim was to investigate which measure derived from three objective MI tasks indicates MI impairment in stroke patients and whether these impairments are specific to the paretic side

Read more

Summary

Introduction

Various interventions have been developed [1]. A widely known example is constraintinduced movement therapy or CIMT [2], for which a number of studies have demonstrated improvements in motor and functional outcomes [3]. Motor imagery (MI) training has been suggested as a promising alternative or add-on therapy to CIMT and other physical therapies (for a review, see [5]). Based on neurofunctional evidence for similar activation patterns during motor execution and MI [6], this intervention seeks for a “backdoor to the motor system” [5]. MI-based activation of sensorimotor areas is thought to support cortical reorganization and thereby to aid motor recovery [7, 8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call