Abstract

Motor imagery is based on the volitional modulation of sensorimotor rhythms (SMRs); however, the sensorimotor processes in patients with amyotrophic lateral sclerosis (ALS) are impaired, leading to degenerated motor imagery ability. Thus, motor imagery classification in ALS patients has been considered challenging in the brain–computer interface (BCI) community. In this study, we address this critical issue by introducing the Grassberger–Procaccia and Higuchi’s methods to estimate the fractal dimensions (GPFD and HFD, respectively) of the electroencephalography (EEG) signals from ALS patients. Moreover, a Fisher’s criterion-based channel selection strategy is proposed to automatically determine the best patient-dependent channel configuration from 30 EEG recording sites. An EEG data collection paradigm is designed to collect the EEG signal of resting state and the imagination of three movements, including right hand grasping (RH), left hand grasping (LH), and left foot stepping (LF). Five late-stage ALS patients without receiving any SMR training participated in this study. Experimental results show that the proposed GPFD feature is not only superior to the previously-used SMR features (mu and beta band powers of EEG from sensorimotor cortex) but also better than HFD. The accuracies achieved by the SMR features are not satisfactory (all lower than 80%) in all binary classification tasks, including RH imagery vs. resting, LH imagery vs. resting, and LF imagery vs. resting. For the discrimination between RH imagery and resting, the average accuracies of GPFD in 30-channel (without channel selection) and top-five-channel configurations are 95.25% and 93.50%, respectively. When using only one channel (the best channel among the 30), a high accuracy of 91.00% can still be achieved by the GPFD feature and a linear discriminant analysis (LDA) classifier. The results also demonstrate that the proposed Fisher’s criterion-based channel selection is capable of removing a large amount of redundant and noisy EEG channels. The proposed GPFD feature extraction combined with the channel selection strategy can be used as the basis for further developing high-accuracy and high-usability motor imagery BCI systems from which the patients with ALS can really benefit.

Highlights

  • brain–computer interface (BCI) enables individuals with severe motor disabilities to control devices or communicate with others by means of their brain activity

  • To deal with this problem, we have proposed in this paper a method by combining the GPFD feature and Fisher criterion-based channel selection strategy

  • The two separate methods have already been used in the BCI community, the use of GPFD and its combination with channel selection is novel for amyotrophic lateral sclerosis (ALS) patients’ motor imagery classification

Read more

Summary

Introduction

BCI enables individuals with severe motor disabilities to control devices or communicate with others by means of their brain activity. Brain activity can be measured by different modalities. EEG is the most frequently used because of many advantages such as lower cost, better portability, and higher temporal resolution. Sensors 2017, 17, 1557 successfully tested on able-bodied subjects, yet patients with amyotrophic lateral sclerosis (ALS) who have really benefited from the BCI technologies are still relatively few [7]. Various BCIs for patients with ALS have been presented. The majority of these BCIs are based on P300 event-related potentials and slow cortical potentials (SCPs)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.