Abstract

The effect of myosin motor protein activity on the filamentous actin (F-actin) rheological response is studied using diffusing wave spectroscopy. Under conditions of saturating motor activity, we find an enhancement of longitudinal filament fluctuations corresponding to a scaling of the viscoelastic shear modulus G(d)(omega) approximately omega(7/8). As the adenosine tri-phosphate reservoir sustaining motor activity is depleted, we find an abrupt transient to a passive, "rigor state" and a return to dissipation dominated by transverse filament modes. Single-filament measurements of the apparent persistence length support the notion that motor activity leads to an increase in the effective temperature for tangential motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call