Abstract

Bearings are critical components in induction motors and brushless direct current motors. Bearing failure is the most common failure mode in these motors. By implementing health monitoring and fault diagnosis of bearings, unscheduled maintenance and economic losses caused by bearing failures can be avoided. This paper introduces trace ratio linear discriminant analysis (TR-LDA) to deal with high-dimensional non-Gaussian fault data for dimension reduction and fault classification. Motor bearing data with single-point faults and generalized-roughness faults are used to validate the effectiveness of the proposed method for fault diagnosis. Comparisons with other conventional methods, such as principal component analysis, local preserving projection, canonical correction analysis, maximum margin criterion, LDA, and marginal Fisher analysis, show the superiority of TR-LDA in fault diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.