Abstract
Device fingerprints can satisfy the high-security requirement of modern mobile applications (e.g., mobile payments) by guaranteeing the operation is performed on a trusted device. However, existing works on device fingerprints are weak to leakage, which leads to an irreversible failure of the device fingerprint authentication system after suffering from fingerprint theft attacks. The vulnerability drives us to propose a reconfigurable device fingerprint, i.e., <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MotoPrint</i> , that can recover the system after suffering from such attacks. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MotoPrint</i> stems from the motor vibration that can represent in both signals of the accelerometer and the gyroscope (i.e., they are homologous motion signals). Therefore, we designed a two-path feature extracting network and a sensor-independent training strategy to eliminate sensor noise that can decline authentication performance. In addition, <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MotoPrint</i> has a complete reconfiguration mechanism to cope with fingerprint leakage, which brings the damaged authentication system back to health. The evaluation of 80 stand-alone vibration motors and 20 in-built ones shows that <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MotoPrint</i> can achieve high authentication accuracy of 98.5%. Meanwhile, we also demonstrate the reconfigured <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MotoPrint</i> , which can also effectively indicate the device's uniqueness with over 98% accuracy, is independent of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MotoPrint</i> s under other stimulating codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dependable and Secure Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.